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Probability Operator Measure and Phase
Measurement in a Deformed Hilbert Space

P. K. Das1

Received September 23, 1999

We discuss the probability operator measure and phase measurement in a deformed
Hilbert space.

1. INTRODUCTION

We consider the set

Hq 5 { f : f (z) 5 ( anzn where ([n]! .an.2 , `}

where [n] 5 (1 2 qn)/(1 2 q), 0 , q , 1.
For f, g P Hq , f (z) 5 (`

n50 anzn, and g(z) 5 (`
n50 bnzn we define addi-

tion and scalar multiplication as follows:

f (z) 1 g(z) 5 o
`

n50
(an 1 bn)zn (1)

and

l + f (z) 5 o
`

n50
lanzn (2)

It is easily seen that Hq forms a vector space with respect to usual
pointwise scalar multiplication and pointwise addition by (1) and (2). We
observe that eq(z) 5 (`

n50 (zn/[n]!) belongs to Hq.
Now we define the inner product of two functions f (z) 5 ( anzn and

g(z) 5 ( bnzn belonging to Hq as
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( f, g) 5 o [n]! anbn (3)

The corresponding norm is given by

| f |2 5 ( f, f ) 5 o [n]! .an.2 , `

With this norm derived from the inner product it can be shown that Hq

is a complete normed space. Hence Hq forms a Hilbert space.
In a recent paper [1] we have proved that the set { fn [ zn/![n]!, n 5

0, 1, 2, 3, . . .} forms a complete orthonormal set. If we consider the following
actions on Hq:

Tfn 5 ![n] fn21
(4)

T*fn 5 ![n 1 1] fn11

where T is the backward shift and its adjoint T* is the forward shift operator
on Hq , then we have shown [1] that the solution of the eigenvalue equation

Tf 5 af (5)

is given by

fa 5 eq(.a.2)21/2 o
`

n50

an

![n]!
fn (6)

We call fa a coherent vector in Hq.
The paper is divided into five sections. In this section we have given

an introduction stating coherent vectors in Hq. In Section 2 we describe the
probability operator measure (POM) in Hq. In Section 3 we discuss phase
distribution in Hq. In Section 4 we study the phase estimation problem, and
in Section 5 we give a conclusion.

2. PROBABILITY OPERATOR MEASURE

A discrete spectrum probability operator measure (POM) consists of a
set of Hermitian, positive-semidefinite operators {Pn: n P N} which resolves
the identity

I 5 o
nPN

Pn (7)

Measurement of this POM, by definition, gives a discrete, classical
random variable with probability distribution

P(n, g) 5 (g, Png) for n P N (8)

where g is any vector of unit norm in Hq.
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In order that the laws of classical probability be satisfied, it is necessary
and sufficient that

0 # P(n, g) # 1, o
`

n50
P(n, g) 5 1 (9)

are satisfied for arbitrary g of unit norm in Hq.
We know that the sequence fn 5 zn/![n]! forms a complete orthonormal

sequence in Hq and comprises eigenvectors of the operator N 5 T*T such that

Nfn 5 [n] fn (10)

Measurement of N for any arbitrary vector g P Hq of unit norm yields
a discrete-valued classical random variable with probability distribution

P( fn , g) 5 .( fn , g).2 for n 5 0, 1, 2, . . . (11)

In order that the law of classical probability be satisfied, it is necessary and
sufficient that

0 # P( fn , g) # 1, o
`

n50
P( fn , g) 5 1 (12)

for arbitrary g P Hq of unit norm.
The completeness of { fn} guarantees that the prescription in equation

(11) obeys equation (12). For, if we expand the arbitrary vector g of unit
norm in terms of fn , we have

g 5 o
`

n50
( fn , g) fn (13)

5 o
`

n50
. fn&^ fn.g

Where we define the operator

. fn&^ fn.: Hq → Hq

by

. fn&^ fn. 5 ( fn, g) fn

Equation (12) is now easily verified from equation (11) and equation (13).
Thus, N operator measurement is equivalent to the POM

{Pn 5 . fn&^ fn.: n 5 0, 1, 2, . . .} (14)

Similarly, a continuous spectrum POM consists of a set of Hermitian,
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positive-semidefinite differential operators {d P(b): b P C} which resolve
the identity

I 5 #
bPC

d P(b) (15)

The result of measuring this POM is, by definition, a continuous classical
random variable whose probability density function is given by

p(b, g) 5
(g, d P(b)g)

db
for b P C (16)

where g is any vector of unit norm in Hq.
We know that the backwardshift T has eigenvectors—the coherent vec-

tors fa (6). These vectors are not orthogonal, but they form a resolution of
the identity

I 5
1

2p #
aPC

dm(a) . fa&^ fa. (17)

where

dm(a) 5 eq(.a.2)eq(2.a.2)dq.a.2 du

with a 5 reiu, which defines a T-POM

d P(a) [ . fa&^ fa.
dm(a)

2p
for a P C (18)

The outcome of the T-POM is a complex-valued continuous classical
random variable with probability density function

p(a, g) 5
(g, d P(a)g)

dm(a)
5

1
2p

.( fa, g).2 for a P C (19)

where g is any vector of unit norm in Hq.
Because of (17), it follows that

p(a, g) $ 0, #
aPC

dm(a)p(a, g) 5 1 (20)

hold for any vector g of unit norm in Hq.

3. PHASE DISTRIBUTION

To obtain the phase distribution we consider first the phase operator
P 5 (qn 1 T*T )21/2T and try to find the solution of the following eigen-
value equation:
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Pfb 5 bfb (21)

We arrive at

fb 5 o
`

n50
an![n]! fn

5 a0 o
`

n50
bn!(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])

[n]!
fn

where b 5 .b.eiu is a complex number. These vectors are normalizable in a
strict sense only for .b. , 1.

For details of the calculations see ref. 2.
Now, if we take a0 5 1 and .b. 5 1 we have

fb 5 o
`

n50
einu!(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])

[n]!
fn (22)

Henceforth, we shall denote this vector as

fu 5 o
`

n50
einu!(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])

[n]!
fn (23)

0 # u # 2p, and call fu a phase vector in Hq.
The phase vectors fu are neither normalizable nor orthogonal. The com-

pleteness relation

I 5
1

2p #
X
#

2p

0

dn(x, u). fu&^ fu. (24)

where

dn(x, u) 5 dm(x) du (25)

may be proved as follows:
Here we consider the set X consisting of the points x 5 0, 1, 2, . . . ,

and m(x) is the measure on X which equals

mn [
[n]!

(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])

at the point x 5 n; u is the Lebesgue measure on the circle.
Define the operator

. fu&^ fu.: Hq → Hq (26)

by
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. fu&^ fu. f 5 ( fu, f ) fu (27)

with f (z) 5 (`
n50 anzn.

Now,

( fu, f )

5 o
`

n50
[n]!

e2inu

![n]! !
(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])

[n]!
an

5 o
`

n50
e2inu!(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])an (28)

Then,

( fu, f ) fu

5 o
`

n50
o
`

m50
anei(m2n)u!(q 1 [0])(q2 1 [1]) . . . (qm 1 [m 2 1])

[m]!

3 !(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1]) fm (29)

Using

#
2p

0

du ei(m2n)u 5 2pdmn (30)

we have

1
2p #

X
#

2p

0

dn(x, u). fu&^ fu. f

5 #
X

dm(x) o
`

n50
o
`

m50
an fm!(q 1 [0])(q2 1 [1]) . . . (qm 1 [m 2 1])

[m]!

3 !(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])
1

2p #
2p

0

ei(m2n)u du

5 o
`

n50
an fn #

X

(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])

![n]!
dm(x)

5 o
`

n50
an fn

(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])

![n]!

3
[n]!

(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])
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5 o
`

n50
![n]! an fn

5 f (31)

Thus, (24) follows.
The phase distribution over the window 0 # u # 2p for any vector f

is then defined by

P(u) 5
1

2p
.( fu, f ).2 (32)

4. PHASE ESTIMATION

Once we have the POM information, we are ready to discuss the phase
estimation problem. Without loss of generality, we assume that 0 # u # 2p.
The class of POMs we must optimize over in order to find the best phase
estimate is taken to be

{d P̂(u): 0 # u # 2p}

where

d P̂(u) 5 d[P̂(u)]† and I 5 #
2p

0

d P̂(u) (33)

The conditional probability density, given the phase operator

P 5 (qn 1 T*T )21/2T

for obtaining a phase value u from this POM is

p(u, P) 5
(g, d P̂(u)g)

dn(x, u)
for 0 # u # 2p, x an integer (34)

where g is a vector of unit norm in Hq.
We choose the POM d P̂(u) and the input vector g to optimize our

estimate of the phase shift P. For a given POM and the input vector, equation
(34) supplies the PDF needed to perform a classical maximal likelihood
estimation. The observed phase value u is our estimate of P. In order for this
estimate to be one of maximum likelihood, we restrict our attention to the
POMs satisfying

PML(u) 5 arg max
u

p(u, P) for 0 # u # 2p (35)

and optimize our estimate over d P̂ and g by maximizing the peak likelihood,
minimizing du [ 1/p(u, P).
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For the input vector

g 5 o
`

n50
( fn , g) fn

where

( fn , g) 5 .( fn , g).eikn, n 5 0, 1, 2, . . . (36)

du is minimized by the following POM:

d P̂(u) 5 . f g
u&^ f g

u.
dn(x, u)

2p
(37)

where

dn(x, u) 5 dm(x) du, 0 # u # 2p

as in (25) and

f g
u [ o

`

n50
einu1ikn

3 !(q 1 [0])(q2 1 [1])(q3 1 [2]) . . . (qn 1 [n 2 1])
[n]!

fn (38)

To calculate the reciprocal peak likelihood du with this optimum POM
to estimate P we observe first

p(u, P) 5
(g, d P̂(u)g)

dn(x, u)
5

.( f g
u, g).2

2p

5
1

2p Zo`
n50

e2inu!(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])
[n]!

.( fn , g)|Z2
(39)

Hence a suitable peak likelihood du for maximum p(u, P) can be [4]

du 5 2p.( f g
u, g).22

5 2p Zo`
n50

!(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])
[n]!

.( fn , g).Z22

(40)

which is independent of the phases {kn}. In fact, p(u, P) is independent of
the phases {kn}.

As the peak likelihood du is independent of {kn}, we can assume, without
loss of generality, that the input vector g 5 (`

n50 ( fn , g) fn has positive real
coefficient ( fn , g). Equation (38) then reduces to
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f g
u 5 fu 5 o

`

n50
einu!(q 1 [0]) . . . (qn 1 [n 2 1])

[n]!
fn (41)

for 0 # u # 2p, which is the solution of the eigenvalue equation (21),

Pfu 5 eiufu

Now we consider the operator

U 5 o
`

n50
e2ikn. fn&^ fn. (42)

Observe that

UU* 5 U*U 5 I

Thus, U is a unitary transformation.
Now, for an arbitrary input vector g the optimum POM from equation

(37) is equivalent to performing the unitary transformation U followed by
the POM

d P(u) 5 . fu&^ fu.
dn(x, u)

2p
(43)

where

dn(x, u) 5 dm(x) du, 0 # u # 2p

as in (24) and (25), for

Uf g
u 5 o

`

n50
einu1ikne2ikn!(q 1 [0]) . . . (qn 1 [n 2 1])

[n]!
fn

5 o
`

n50
einu!(q 1 [0]) . . . (qn 1 [n 2 1])

[n]!
fn

5 fu (44)

where f g
u is given by (38).

Shifting the input vector’s phase by the phase operator P amounts to

( fn , g) → einu0( fn , g) for n 5 0, 1, 2, . . . (45)

By rotating out the input phases kn with the U transformation we get
the transformed input as

einu0( fn , g) →U einu0.( fn , g). (46)

The effect of the POM on equation (43) on this transformed vector
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g8 5 o
`

n50
einu0.( fn , g). fn (47)

gives the classical phase with PDF

p(u, P) 5
(g8, d P(u)g8)

dn(x, u)

5
1

2p
(g8, . fu&^ fu.g8)

5
.( fu, g8.2

2p

5
1

2p Zo`
n50

ein(u02u)!(q 1 [0]) . . . (qn 1 [n 2 1])
[n]!

.( fn , g).Z2 (48)

From the above equation it is clear that ML estimate obeys PML(u) 5 u.
Thus, the POM in equation (24) leads to the ML phase estimate for all

vectors in Hq. Thus, to achieve our goal of jointly optimizing phase estimate
performance over both the measurement and the input vector, it remains for
us to minimize du from equation (40) by appropriate choice of input vector.
Specifically, the coefficients {( fn , g)} for the input vector must minimize the
right side of equation (40) subject to the normalization constraint

o
`

n50
.( fn , g).2 5 1 (49)

and the average number constraint

o
`

n50
[n].( fn , g).2 5 N0 (50)

where N0 5 (g, T*Tg).
Without loss of generality, we shall assume that ( fn , g) are positive real.

Now, maximize

L(g, l1, l2) [
1

2p Fo
`

n50
( fn , g)G2

1 l1Fo
`

n50
( fn , g)22 1G

1 l2Fo
`

n50
[n]( fn , g)2 2 N0G (51)

where l1 and l2 are Lagrange multipliers.
It is straightforward to show that
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( fn , g) 5
c

k 1 [n]
for n 5 0, 1, 2, . . . (52)

achieves the required stationary point for L, where c and k are positive
constants depending on the Lagrange multipliers. For brevity we shall chose
k 5 1.

As we know that [n] $ n for q . 0, we have

c/(1 1 [n])
1/n

#
c

1/n 1 1

Hence we see that

lim
n→`

c/(1 1 [n])
1/n

# c

Thus, the series (`
n50 [c/(1 1 [n])] and (`

n50 (1/n) converge or diverge
together. But (`

n50 (1/n) diverges. Hence, we must introduce a truncation
parameter in equation (52). That is, we have

( fn , g) 5
c

1 1 [n]
for n 5 0, 1, 2, . . . , s

5 0 for n . s (53)

Now, we have

N0 5 o
s

n50
[n] ? .( fn , g(a)).2

5 o
s

n50
[n]

c2

(1 1 [n])2

5 o
s

n50

c2

1 1 [n]
2 1 (54)

where we have used equations (50), (51), and (53) with the truncation point s.
Then,

du 5 2pFo
s

n50
!(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])

[n]!
( fn , g)G22

5 2pc2Fo
s

n50
!(q 1 [0])(q2 1 [1]) . . . (qn 1 [n 2 1])

[n]!
c2

1 1 [n]G
22
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, 2pc2AFo
s

n50

c2

1 1 [n]G
22

5
2pc2 A

(N0 1 1)2 '
2pc2 A

N 2
0

(55)

for N0 À 1. Here A is a constant.

5. CONCLUSION

We know [3] that ML phase estimation with the optimized state leads
to du , 1/N 2

0 for the reciprocal peak likelihood performance, where we are
interested in the behavior at high average photon number, namely N0 À 1.
In this paper we show that in the deformed case du can be even less than
1/N 2

0.
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